
ALGEBRAIC CURVES
EXERCISE SHEET 4

Unless otherwise specified, k is an algebraically closed field.

Exercise 4.1. Show that all local rings of the affine line A1
k are isomorphic to the

same ring R.

Solution 1. Let p ∈ A1
k. It corresponds to a maximal ideal p = (x− a), a ∈ k of

k[x]. S = k[x] \ p is a multiplicative set. The local ring at p is k[x](x−a). But there
is a ring isomorphism k[x] → k[x], x 7→ x+ a which sends (x− a) to (x) and thus,
k[x](x−a) ≃ k[x](x) =: R.

Exercise 4.2. An affine algebraic group is an affine variety G, whose underlying
set is a group, such that the morphisms i : G → G, g 7→ g−1 and m : G × G →
G, (g, h) 7→ gh are polynomial maps. Let V1 = A1

k − {0} and V2 = V (xy − 1).
From the first exercise, we call R the local ring of A1

k at any point.

(1) Show that O(V1) = k[x, x−1] = k[x, y]/(xy − 1).
(2) Construct a morphism V2 → A1

k whose image is V1.
(3) Show that the local ring of V2 at any point is isomorphic to R. Are V2 and

A1
k isomorphic?

(4) Show that V2 can be endowed with a structure of affine algebraic group.

Solution 2.

(1) By definition,

O(A1
k − {0}) = ∩a̸=0

{f

g
| g(a) ̸= 0

}
= k[x,

1

x
]

The following ring morphism has kernel (xy − 1) and we conclude using
the isomorphism theorem.

k[x, y] → k[x, x−1]
x 7→ x
y 7→ x−1

(2) The projection (v1, v2) 7−→ v1 works. On structure rings, it is

k[x] → k[x, y]/(xy − 1)
x 7→ x

(3) k[x, x−1] and k[x] are not isomorphic so V2 and A1
k are not isomorphic.

However, all its local rings are the local rings of V1 which in turns are
1



all isomorphic to R (Check m(v1,v2)/m
2
(v1,v2)

= (x − v1) and the fact that
OP (V ) ≃ OP (V )).

(4) V2 has a multiplication map given by
m : (a, b) · (c, d) 7→ (ac, bd)

(ac, bd) ∈ V2 because acbd = (ab)(cd) = 1. The inverse map is :
i : (a, b) 7→ (b, a)

m((a, b), (b, a)) = (ab, ba) = (1, 1) which is the neutral element for m. This
defines a structure of affine algebraic group on V2.

Exercise 4.3. Let V = V (y2 − x3). Let φ : A1
k → V be the morphism defined by

φ(t) = (t2, t3). From the first exercise, we call R the local ring of A1
k at any point.

(1) Show φ is a bijective morphism, but is not an isomorphism.
(2) Let P ∈ V . Is the local ring of V at P isomorphic to R?

Solution 3. (1) ϕ is a bijection : there is an inverse (a, b) 7→ b
a

on V \ (0, 0)
and {0} 7→ {(0, 0)} is clearly a bijection. However it is not an isomorphism,
because the inverse (a, b) 7→ b

a
does not extend to {0, 0}.

We can also see it on the rings of functions, where ϕ is induced by the
morphism

k[x, y] → k[x]
x 7→ x2

y 7→ x3

The kernel is (y2 − x3), but it is clearly not surjective because x is not in
the image.

(2) There is an isomorphism V1 ≃ V \ {(0, 0)} so the local rings at p ∈ V \
{(0, 0)} are isomorphic to R. It is not the case at P = (0, 0). Let OV,P

be the local ring at P . We can consider m/m2 where m is the maximal
ideal of OV,P . It is a k−vector space and there is a basis given by x and
y, so it is two-dimensional. We can compare it with mR/m

2
R where mR is

the maximal ideal of R. It is clearly 1−dimensional. m/m2 is an invariant
of local rings (called the Zariski cotangent space), so this shows that OV,P

and R are not isomorphic.

Exercise 4.4. Let V = V (Y 2 −X2(X +1)) and x, y the residues of X, Y in Γ(V ).
Let z = y

x
∈ k(V ). Find the poles of z and z2.

Solution 4. Note that z is represented by Y
X

or X(X+1)
Y

in k[X, Y ]. It has a pole
at (0, 0). z2 = y2

x2 = x2(x+1)
x2 = x+ 1 is polynomial, it has no poles.

Exercise 4.5. Let V be an affine variety and f ∈ k(V ) a rational function. Show
that f defines a continous function U → k, for some non empty open subset
U ⊂ V . Furthermore f is uniquely determined by this function.

Solution 5. V is irreducible so k[V ] is integral and we can write f as g/h with
g, h ∈ k[V ]. Then the zero set of h is a closed subset of V and we can take U to
be its complement. The only Zariski closed subsets of k are ∅, k and finite sets
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of points. Checking the continuity on singletons is enough. Using translations, it
suffices to check at 0. Now f−1(0) is Zariski closed since f−1(0) = g−1(0) is Zariski
closed.

Using projective space : We can see f as a function V 7→ P1. Then, f−1(∞) is
closed and its complement is the open subset U .

An open in an irreducible set is dense. So just by continuity f|U determines f .

Exercise 4.6. * Let F ∈ k[x, y] be an irreducible polynomial of degree at most
2. Show that V (F ) is either isomorphic to V1 = A1

k or V2 = V (xy − 1). Specify
in which case it is isomorphic to V1 (resp. V2). (Hint: Use linear changes of
coordinates to eliminate monomials in F )

Solution 6. A degree 1 irreducible polynomial is of the form F = ax+ by+ c with
a or b ̸= 0. Assume a ̸= 0. Then we have the following surjective morphism

k[x, y] → k[x]
x 7→ −a−1(bx+ c)
y 7→ x

whose kernel is (F ). Thus V (F ) is isomorphic to A1
k.

Now suppose F is an irreducible polynomial of degree 2 in k[x, y].

We can write

F (x, y) = ax2 + by2 + cxy + dx+ ey + f = 0

• if a = 0 and b = 0, then c ̸= 0. Using

cxy + dx+ ey = c(x+
e

c
)(y +

d

c
)− ed

we get F = cXY + f ′ with X = x + e
c
, Y = y + d

c
and f ′ = f − ed. Then

F irreducible implies f ′ ̸= 0. If we write X ′ = c
f ′ , then F = f ′XY − f ′. It

is then clear that V (F ) = V (XY − 1).
Note that these affine changes of variables are admitted because they

induce isomorphism of rings.
• if a ̸= 0, b = 0, use Gauss reduction to eliminate xy, and another affine

change of variable to eliminate x to get

F = X2 + e′Y + f ′

Then F irreducible implies e′ ̸= 0. Changing Y ′ = d′Y + f ′, we get that
V (F ) = V (X2 + Y ). But then use the isomorphism

k[x, y]/(x2 − y) → k[x]
x 7→ x
y 7→ x2

to get that V (F ) = V1

• if a ̸= 0, b ̸= 0, use again Gauss reduction to eliminate xy and affine
transformations to eliminate linear terms. We get F = X2 + y2 + f ′.
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But ax2 + by2 is always reducible over an algebraically closed field, as

ax2 + by2 = (
√
ax+ i

√
by)(

√
ax− i

√
by)

We can then use affine transformation in x and y to get F = f ′′(XY − 1),
so V (F ) = V2.
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