ALGEBRAIC CURVES
EXERCISE SHEET 4

Unless otherwise specified, k is an algebraically closed field.

Exercise 4.1. Show that all local rings of the affine line A} are isomorphic to the
same ring R.

Solution 1. Let p € Aj}. It corresponds to a maximal ideal p = (z — a), a € k of
klz]. S = k[z]\p is a multiplicative set. The local ring at p is k[z](y—q). But there
is a ring isomorphism k[z] — k[x], © — x 4+ a which sends (z — a) to (x) and thus,
]{J[l‘](m_a) >~ k[l‘](m) =: R.

Exercise 4.2. An affine algebraic group is an affine variety G, whose underlying
set is a group, such that the morphisms i : G — G, g — gt and m : G x G —
G, (g,h) — gh are polynomial maps. Let V; = Al — {0} and V, = V(zy — 1).
From the first exercise, we call R the local ring of A} at any point.

(1) Show that O(V;) = k[z,z ™! = k[z, y]/(zy — 1).

(2) Construct a morphism V5 — Al whose image is V.

(3) Show that the local ring of V5 at any point is isomorphic to R. Are V5 and
A} isomorphic?

(4) Show that V5 can be endowed with a structure of affine algebraic group.

Solution 2.
(1) By definition,

O(h} = {01 = Nusof L 1 90 # 0} = kle. 7]

The following ring morphism has kernel (zxy — 1) and we conclude using
the isomorphism theorem.

klz,y] — klz, 7]
X =T
Y — !

(2) The projection (vy,vs) — vy works. On structure rings, it is

klz] — k[, y]/(zvy — 1)
r +—= T

(3) k[z,z7'] and k[z] are not isomorphic so V3 and A} are not isomorphic.

However, all its local rings are the local rings of V; which in turns are
1



all isomorphic to R (Check m(, v,)/m{, ,,) = (T —v1) and the fact that

Op(V) ~ Op(V)).
(4) V5 has a multiplication map given by

m : (a,b)-(c,d) — (ac,bd)
(ac, bd) € V4 because acbd = (ab)(cd) = 1. The inverse map is :
i :(a,b)— (b,a)

m((a,b), (b,a)) = (ab,ba) = (1,1) which is the neutral element for m. This
defines a structure of affine algebraic group on V5.

Exercise 4.3. Let V =V (y? — 2*). Let ¢ : A} — V be the morphism defined by
©(t) = (t*,t%). From the first exercise, we call R the local ring of A} at any point.

(1) Show ¢ is a bijective morphism, but is not an isomorphism.
(2) Let P € V. Is the local ring of V' at P isomorphic to R?

Solution 3. (1) ¢ is a bijection : there is an inverse (a,b) — 2 on V'\ (0,0)
and {0} — {(0,0)} is clearly a bijection. However it is not an isomorphism,
because the inverse (a,b) — 2 does not extend to {0,0}.

We can also see it on the rings of functions, where ¢ is induced by the
morphism
klz,yl = k[z]
r 2’
y =’
The kernel is (y*> — x3), but it is clearly not surjective because z is not in
the image.

(2) There is an isomorphism Vi ~ V' \ {(0,0)} so the local rings at p € V' \
{(0,0)} are isomorphic to R. It is not the case at P = (0,0). Let Oyp
be the local ring at P. We can consider m/m? where m is the maximal
ideal of Oy p. It is a k—vector space and there is a basis given by x and
y, so it is two-dimensional. We can compare it with mg/m% where mp is
the maximal ideal of R. Tt is clearly 1—dimensional. m/m? is an invariant
of local rings (called the Zariski cotangent space), so this shows that Oy p
and R are not isomorphic.

Exercise 4.4. Let V =V (Y? — X?(X +1)) and z,y the residues of X, Y in T'(V).
Let z = £ € k(V). Find the poles of z and 2?.

Solution 4. Note that z is represented by % or X(‘);H) in k[X,Y]. It has a pole
at (0,0). 22 = g—i = % = x + 1 is polynomial, it has no poles.

Exercise 4.5. Let V be an affine variety and f € k(1) a rational function. Show
that f defines a continous function U — k, for some non empty open subset
U C V. Furthermore f is uniquely determined by this function.

Solution 5. V is irreducible so k[V] is integral and we can write f as g/h with
g,h € k[V]. Then the zero set of h is a closed subset of V' and we can take U to

be its complement. The only Zariski closed subsets of k are @,k and finite sets
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of points. Checking the continuity on singletons is enough. Using translations, it
suffices to check at 0. Now f~1(0) is Zariski closed since f~1(0) = ¢~*(0) is Zariski
closed.

Using projective space : We can see f as a function V + P!. Then, f~!(oc0) is
closed and its complement is the open subset U.

An open in an irreducible set is dense. So just by continuity fj determines f.

Exercise 4.6. * Let F' € k[z,y] be an irreducible polynomial of degree at most
2. Show that V(F) is either isomorphic to V; = A} or Vo = V(zy — 1). Specify
in which case it is isomorphic to Vj (resp. V3). (Hint: Use linear changes of
coordinates to eliminate monomials in F')

Solution 6. A degree 1 irreducible polynomial is of the form F' = ax + by + ¢ with
a or b # 0. Assume a # 0. Then we have the following surjective morphism

klz,y] — klz]
r = —a bz +c)
Yy =
whose kernel is (F'). Thus V(F) is isomorphic to A}.
Now suppose F' is an irreducible polynomial of degree 2 in k[z,y].
We can write

F(z,y) =ar* +by* +caxy +dov +ey+ f=0

e if a =0 and b = 0, then ¢ # 0. Using

d
cxy+d:v+ey:c($~l—g)(y—l—z)—ed

we get F' = cXY + f' with X =z + ¢, Y:y—i—% and f' = f —ed. Then
F irreducible implies f’ # 0. If we write X' = 75 then F'= f'XY — f'. Tt
is then clear that V(F) = V(XY —1).
Note that these affine changes of variables are admitted because they
induce isomorphism of rings.
o if a # 0, b = 0, use Gauss reduction to eliminate xry, and another affine
change of variable to eliminate x to get

F=X*+eY +f

Then F' irreducible implies ¢’ # 0. Changing Y’ = d'Y + f’, we get that
V(F)=V(X?+Y). But then use the isomorphism

klz,y]/(a* —y) — kla]
r —=T
y > a?

to get that V(F) =W,
e if a # 0, b # 0, use again Gauss reduction to eliminate zy and affine

transformations to eliminate linear terms. We get I = X2 + 9% + f'.
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But ax? + by? is always reducible over an algebraically closed field, as
az® + by? = (Vaz + ivVby)(Vaz — ivby)

We can then use affine transformation in z and y to get F' = f"(XY — 1),
so V(F) = Vs.



